Multimodal data

Here are overall classification and regression problems results on multimodal datasets across state-of-the-art AutoML frameworks using AutoML Multimodal Benchmark test suite:

framework AutoGluon FEDOT
Dataset name Metric name
prod accuracy 0.895 0.897
salary accuracy 0.528 0.402
airbnb accuracy 0.466 0.434
channel accuracy 0.550 0.542
wine accuracy 0.842 0.784
imdb auc 0.874 0.872
fake auc 0.968 0.958
kick auc 0.775 0.752
jigsaw auc 0.915 0.998
qaa r2 0.383 0.504
qaq r2 0.426 0.554
book r2 0.600 0.994
jc r2 0.612 0.619
cloth r2 0.654 0.733
ae r2 0.979 0.974
pop r2 0.020 0.020
house r2 0.943 0.928
mercari r2 0.569 0.520

The results are obtained using sever based on Xeon Cascadelake (2900MHz) with 12 cores and 24GB memory for experiments with the local infrastructure.