Operation
- class fedot.core.operations.operation.Operation(operation_type, **kwargs)[source]
Bases:
object
Base class for operations in nodes. Operations could be machine learning (or statistical) models or data operations
- Parameters
operation_type (str) – name of the operation
- fit(params, data)[source]
This method is used for defining and running of the evaluation strategy to train the operation with the data provided
- Parameters
params (Optional[Union[fedot.core.operations.operation_parameters.OperationParameters, dict]]) – hyperparameters for operation
data (InputData) – data used for operation training
- Returns
trained operation and prediction on train data
- Return type
tuple
- predict(fitted_operation, data, params=None, output_mode='default')[source]
This method is used for defining and running of the evaluation strategy to predict with the data provided
- Parameters
fitted_operation – trained operation object
data (InputData) – data used for prediction
params (Optional[Union[fedot.core.operations.operation_parameters.OperationParameters, dict]]) – hyperparameters for operation
output_mode (str) – string with information about output of operation,
example (for) –
labels (is the operation predict probabilities or class) –
- predict_for_fit(fitted_operation, data, params=None, output_mode='default')[source]
This method is used for defining and running of the evaluation strategy to predict with the data provided during fit stage
- Parameters
fitted_operation – trained operation object
data (InputData) – data used for prediction
params (Optional[fedot.core.operations.operation_parameters.OperationParameters]) – hyperparameters for operation
output_mode (str) – string with information about output of operation, for example, is the operation predict probabilities or class labels
- abstract static assign_tabular_column_types(output_data, output_mode)[source]
Assign types for columns based on task and output_mode (for classification)
For example, pipeline for solving time series forecasting task contains lagged and ridge operations.
ts_type -> lagged -> tabular type
So, there is a need to assign column types to new data
- Parameters
output_data (OutputData) –
output_mode (str) –
- Return type
- fedot.core.operations.operation._eval_strategy_for_task(operation_type, current_task_type, operations_repo)[source]
The function returns the strategy for the selected operation and task type. And if it is necessary, found acceptable strategy for operation
- Parameters
operation_type (str) – name of operation, for example,
'ridge'
current_task_type (TaskTypesEnum) – task to solve
operations_repo (OperationTypesRepository) – repository with operations
- Returns
EvaluationStrategy
class for this operation- Return type
Model
- class fedot.core.operations.model.Model(operation_type)[source]
Bases:
fedot.core.operations.operation.Operation
Class with
fit
/predict
methods defining the evaluation strategy for the task- Parameters
operation_type (str) – name of the model
- static assign_tabular_column_types(output_data, output_mode)[source]
Assign types for tabular data obtained from model predictions.
By default, all types of model predictions for tabular data can be clearly defined
- Parameters
output_data (OutputData) –
output_mode (str) –
- Return type
Data operation
- class fedot.core.operations.data_operation.DataOperation(operation_type)[source]
Bases:
fedot.core.operations.operation.Operation
Class with
fit
/predict
methods defining the evaluation strategy for the task- Parameters
operation_type (str) – name of the data operation
- static assign_tabular_column_types(output_data, output_mode)[source]
Assign new column types if it necessary. By default, all data operations must define column types at lower levels (
EvalStrategies
andImplementations
). In some cases the previously defined data types are passed.- Parameters
output_data (OutputData) –
output_mode (str) –
- Return type