Source code for examples.advanced.multimodal_text_num_example

from fedot import Fedot
from fedot.core.data.data_split import train_test_data_setup
from fedot.core.data.multi_modal import MultiModalData
from fedot.core.utils import fedot_project_root
from fedot.core.utils import set_random_seed


[docs]def run_multi_modal_example(file_path: str, visualization: bool = False, with_tuning: bool = True, timeout: float = 10.) -> float: """ Runs FEDOT on multimodal data from the `Wine Reviews dataset <https://www.kaggle.com/datasets/zynicide/wine-reviews>`_. The dataset contains information about wine country, region, price, etc. with text features in the ``description`` column and other columns containing numerical and categorical features. It is a classification task for wine variety prediction. Args: file_path: path to the file with multimodal data. visualization: if True, then final pipeline will be visualised. with_tuning: if True, then pipeline will be tuned. timeout: overall fitting duration Returns: F1 metrics of the model. """ task = 'classification' path = fedot_project_root().joinpath(file_path) data = MultiModalData.from_csv(file_path=path, task=task, target_columns='variety', index_col=None) fit_data, predict_data = train_test_data_setup(data, shuffle=True, split_ratio=0.7) automl_model = Fedot(problem=task, timeout=timeout, with_tuning=with_tuning, n_jobs=1) automl_model.fit(features=fit_data, target=fit_data.target) _ = automl_model.predict(predict_data) metrics = automl_model.get_metrics(metric_names='f1') if visualization: automl_model.current_pipeline.show() print(f'F1 for validation sample is {round(metrics["f1"], 3)}') return metrics['f1']
if __name__ == '__main__': set_random_seed(42) run_multi_modal_example(file_path='examples/data/multimodal_wine.csv', visualization=True)